

iG/Check for INTERLIS 2

Zusammenfassung

Diese Dokumentation beschreibt das infoGrips Produkt iG/Check for INTERLIS 2. Mit iG/Check for INTERLIS 2 können INTERLIS 2 Transferdateien automatisch geprüft werden. Die Dokumentation darf nur mit Erlaubnis der infoGrips GmbH vervielfältigt werden.

Inhaltsverzeichnis

1. Einleitung	4
1.1. Konventionen	4
1.2. Funktionsweise	4
1.3. Begriffe	4
2. Installation	6
2.1. Uberblick	6
2.2. Installationsschritte	6
2.3. Lizenzierung	6
2.4. Testen der Installation	7
2.5. Aktualisieren der Installation	7
3. Bedienung	8
3.1. ICS for Windows	8
3.2. Bedienung über ein DOS-Fenster	9
4. Fehlermeldungen	10
4.1. Was uberpruit wird	10
4.2. Verhalten bei Fehlern	10
4.3. Feniermeiaungen	10
5. Komigurationsparameter	12
5.1. Angemene i arameter	12
5.1.2. ICCHECK_PARAM MODELS	12
5.1.2. IGCHECK_PARAM MODEL NAME	12
5.1.4 IGCHECK PARAM MODEL DIR	13
5.1.5. IGCHECK PARAM INPUT EXTENSION	13
5 1 6 IGCHECK PARAM VERSION	13
5.1.7. IGCHECK PARAMINTERNET ACCESS	13
5.1.8. IGCHECK PARAM.PROXY *	13
5.2. Prüfungen ein- oder ausschalten	13
5.2.1. IGCHECK PARAM.CHECK AREA	13
5.2.2. IGCHECK PARAM.CHECK UNIQUE	14
5.2.3. IGCHECK PARAM.CHECK CARDINALITY	14
5.2.4. IGCHECK_PARAM.CHECK_CONSTRAINTS	14
5.2.5. IGCHECK_PARAM.CHECK_TAG_ORDER	14
5.2.6. IGCHECK_PARAM.CHECK_EXTERNAL_REF	14
5.2.7. IGCHECK_PARAM.CHECK_CHARSET	14
5.2.8. IGCHECK_PARAM.CHECK_ARC_RADIUS	14
5.3. Formatierung der Logdatei	14
5.3.1. DISPLAY_ATTRIBUTES	14
5.3.2. IGCHECK_PARAM.MULTI_LINE_ERROR	15
5.3.3. IGCHECK_PARAM.TRACE	15
5.3.4. IGCHECK_PARAM.TRACE_DRIVER	15
5.4. Fehleroutput	15
5.4.1. IGCHECK_PARAM.XTF_ERRORLOG	15
5.4.2. IGCHECK_PARAM.CSV_ERRORLOG	16
A. Literaturverzeichnis	16
B. Verzeichnis der Fehlermeldungen	16
U. Datenmodell der Fehlerdatei (_err.xtt)	26
D. Suche nach Wiedelldateien	28
L. Metaaurinuute	49

1. Einleitung

Das hier vorliegende Benutzerhandbuch beschreibt iG/Check for INTERLIS 2 für die Betriebsysteme Windows 7, Windows 8, Windows 10 und Windows 11 (bzw. Windows 2008, Windows 2012, Windows 2019 und Windows 2022). Bei iG/Check for INTERLIS 2 (im Folgenden auch kurz mit iG/Check bezeichnet) handelt es sich um ein Qualitätssicherungswerkzeug mit dem INTERLIS 2.3 / 2.4 Transferdateien auf Konsistenz gegenüber einem gegebenen INTERLIS 2.3 / 2.4 Datenmodell überprüft werden können. iG/Check kann von Auftraggebern (Bund, Kantone, Gemeinden, Werke) für die Verifikation der von den Datenlieferanten (Geometer, Ingenieurbüros) gelieferten Daten oder die betriebsinterne Qualitätskontrolle eingesetzt werden.

Das Benutzerhandbuch ist wie folgt aufgebaut:

- In Kapitel 1 wird die Funktionsweise von iG/Check beschrieben.
- In Kapitel 2 ist die Installation von iG/Check beschrieben.
- In Kapitel 3 ist die Bedienung von iG/Check beschrieben.
- In Kapitel 4 ist dokumentiert, welche Fehler von iG/Check gemeldet werden.
- In Kapitel 5 wird auf die Konfigurationsmöglichkeiten eingegangen.
- Im Anhang findet man weitere Informationen zu den Fehlermeldungen und zum Fehlermodell errorlog24.ili.

iG/Check for INTERLIS 2 ist Bestandteil des infoGrips Produkt INTERLIS Tools.

1.1. Konventionen

In dieser Dokumentation werden folgende Konventionen eingehalten:

Kursiv	Namen von Dateien, wichtige Anmerkungen.
fett	neue Begriffe, Namen von Funktionen oder Methoden.
courie	Programmtext oder Eingaben im Betriebssystem.
[1]	Verweis auf das Literaturverzeichnis im Anhang

1.2. Funktionsweise

iG/Check benutzt den offiziellen INTERLIS 2 Compiler der KOGIS und kann dadurch die IN-TERLIS-Modelldatei (.ili) und die INTERLIS-Transferdatei (.xtf) überprüfen (s.a. 1.2). Da iG/Check die INTERLIS-Modelldatei bei jeder Überprüfung interpretiert, kann jedes mit IN-TERLIS 2 (Version 2.3 oder 2.4) beschriebene Datenmodell, d.h. jedes Bundesmodell oder auch jedes kantonale bzw. jedes benutzerdefinierte Modell von iG/Check überprüft werden. Eine Anpassung von iG/Check an kantonale Mehranforderungen oder Benutzermodelle ist daher nicht notwendig.

1.3. Begriffe

INTERLIS

Eine ursprünglich im Auftrag der eidgenössischen Vermessungsdirektion entwickelte Datenmodellierungssprache (DML) [1]. INTERLIS eignet sich besonders für die Beschreibung von Datenmodellen von geographischen Informationssystemen (GIS). IN-TERLIS kann aber auch für andere Anwendungen (z.B. Datenbankapplikationen) eingesetzt werden.

INTERLIS-Modelldatei

Die INTERLIS-Modelldatei (Endung .ili) ist eine ASCII-Datei in der ein konkretes INTERLIS-Datenmodell in INTERLIS beschrieben ist.

INTERLIS-Transferdatei

Eine nach den Regeln des Transferformats aufgebaute XML-Datei (Endung .xtf), s.a. [1].

Transferidentifikation

Jedem Objekt in der Transferdatei ist eine eindeutige Transferidentifikation (TID) zugeordnet.

ICS

infoGrips Conversion System. Runtimesystem mit dem das infoGrips Produkt iG/Check for INTERLIS ausgeführt wird.

2. Installation

2.1. Überblick

iG/Check wird für alle unterstützten Betriebssysteme gleich installiert. Die folgende Installationsanleitung gilt daher für alle Betriebssysteme.

2.2. Installationsschritte

- 1. Melden Sie sich unter einem Benutzer mit Administrator Privileg im System an. Die Anmeldung als Administrator ist notwendig, weil das Installationsprogramm Einträge in die Windows-Registratur macht.
- 2. Starten Sie das Installationsprogramm igcheck2.exe.
- 3. Lesen Sie die Lizenzvereinbarung und stimmen Sie der Lizenzvereinbarung zu, oder brechen Sie die Installation ab.
- 4. Geben Sie für das Installationsverzeichnis einen gültigen Pfadnamen an (für iG/Check for INTERLIS 2 empfehlen wir c:\igcheck2). Im Weiteren wird dieses Installationsverzeichnis mit IGCHECK_DIR bezeichnet. Hinweis: Bitte verwenden Sie nach Möglichkeit keine Installationsverzeichnisse mit Leer- oder anderen Sonderzeichen.
- 5. Das Installationsprogramm kopiert nun die Programmdateien in das Installationsverzeichnis IGCHECK_DIR und installiert das Produkt ihrem Computer.
- 6. Beenden Sie das Installationsprogramm.

2.3. Lizenzierung

- Dieser Schritt muss für den von KOGIS via www.interlis.ch verteilten Checker nicht durchgeführt werden, weil die Lizenz bereits im Installationsprogramm enthalten ist.
- 1. Rufen Sie das Lizenzierungsprogramm auf:

```
Start > Programme > infoGrips INTERLIS Tools > License
```

2. Je nachdem, ob Sie das vollständige Produkt INTERLIS Tools oder nur iG/Check lizenziert haben, müssen Sie die Lizenzinformationen in einer der folgenden Lizenzdateien eintragen:

INTERLIS Tools: iltools.lic

iG/Check for INTERLIS 2: igcheck2.lic

Wählen oder geben Sie mit Select/Enter die entsprechende Lizenzierungsdatei ein.

- 3. Tragen Sie die Lizenzinformationen Company, Text, Modules und Serialno ein. Die Eingaben müssen absolut identisch (d.h. ohne zusätzliche Leerzeichen) zu den Angaben im Begleitbrief sein, da sonst ICS die Lizenzinformationen nicht anerkennt.
- 4. Speichern Sie Ihre Eingaben mit Save. Sie können jederzeit die Felder Company, Modules, Text und Serialno frisch eingeben. Sie müssen jede Änderung mit Save sichern.
- 5. Beenden Sie mit Cancel das Lizenzierungsprogramm.

2.4. Testen der Installation

Nach der Installation von iG/Check 2 können Sie die mitgelieferte INTERLIS-Transferdatei roads24.xtf (s.a. [1]) wie folgt prüfen:

1. Starten Sie ICS for Windows über die Windows Start Schaltfläche mit:

Start > infoGrips INTERLS Tools > iG/Check for INTERLIS 2

- 2. Starten Sie die Checker Konfiguration mir Run.
- 3. Wählen Sie die Datei \examples\roads24.xtf aus.
- 4. iG/Check überprüft nun ob die Transferdatei roads24.xtf mit den Spezifikationen in den INTERLIS-Modelldateien unter IGCHECK_DIR\user\models24*.ili bzw. IGCHECK_DIR\system\models24*.ili übereinstimmt.
- 5. Die Fehlermeldungen können mit Show Log angezeigt werden.

2.5. Aktualisieren der Installation

Seit Version 2012 kann die iG/Check Installation auch halbautomatisch via den Update-Server der infoGrips GmbH aktualisiert werden. Dazu muss lediglich das Skript \system\script\util\Update.cfg mit ICS for Windows geladen und gestartet werden.

3. Bedienung

iG/Check kann über die Windowsoberfläche ICS for Windows oder über die iG/Check Kommandozeile aufgerufen werden. Nachfolgend sind beide Umgebungen beschrieben.

3.1. ICS for Windows

Die komfortabelste Bedienung bietet die Windowsoberfläche ICS for Windows. Sie können iG/Check über die Windows Start Schaltfläche unter:

Programme>infoGrips INTERLIS Tools>iGCheck for INTERLIS 2

aufrufen. Nach dem Start von ICS for Windows wird folgendes Menü angezeigt:

IG ICS	_		×
Help			
iG/Script Script: F:\users\MGPRO\dev\product\iGCheck2\user\script\igcheck\interlis2.cfg		User Sc System S	ript cript
License Information iG/Check for INTERLIS 2 WORLD WIDE SINGLE USER LICENSE	[Show So Run Show L	ript .og
Status Information InputObjects: 0 Script compiled successfully		Cance	3
© infoGrips GmbH, 1997-2025			

Abbildung 1. Bedienoberfläche ICS for Windows

Die Funktionsknöpfe haben folgende Bedeutung:

- User Script ... bzw. System Script ... Konfigurationsdatei auswählen. Normalerweise wird automatisch \user\script\igcheck\interlis2.cfg geladen. Falls Sie eigene Konfigurationen erstellt haben, können Sie diese unter User Script ... auswählen (s.a. Kapitel 5).
- Show Script. Zeigt die Konfigurationsdatei mit notepad.exe an (s.a. Kapitel 5).
- **Run**. iG/Check fragt zuerst den Namen der zu prüfenden Transferdatei ab, danach wird der Prüfvorgang gestartet.
- Show Log. Zeigt die erzeugte Logdatei mit notepad. exe an. Neben Meldungen und Fehlern wird am Schluss der Logdatei eine Statistik über alle gelesenen Objekte ausgegeben. Falls Sie mehrere Dateien ausgewählt haben, wird mit Show Log nur eine Zusammenfassung der Resultate angezeigt. Die detaillierten Ergebnisse werden in separaten .log Dateien mit dem gleichen Namen wie die Inputdateien abgelegt.
- · Cancel. Verlässt ICS for Windows.

Die Anzeigefelder des ICS for Windows Menüs haben folgende Bedeutung:

• iG/Script. Zeigt das aktuell ausgewählte Skript an.

- License Information. Zeigt die Lizenzinformationen an.
- Status Information. Unter Inputobjects wird die Anzahl der von iG/Check gelesenen Objekte angezeigt. Unter Outputobjects wird die Anzahl der vom XTF-Log geschriebenen Objekte angezeigt (s.a. 5.2). Unter Errors wird die Anzahl der gefundenen Fehler angegeben.

3.2. Bedienung über ein DOS-Fenster

Im Batch-Modus kann iG/Check wie folgt aufgerufen werden:

igcheck2 [<Transferdatei>][<Modelldatei1> .. <ModelldateiN>]

Für <Transferdatei> geben Sie die zu prüfende INTERLIS-Transferdatei und für <Modelldatei1..N> die dazugehörigen INTERLIS-Modelldateien (.ili) an. Falls <Modelldatei1..N> weggelassen wird, sucht iG/Check die passenden Modelldateien automatisch in den Verzeichnissen IGCHECK_DIR\user\models24 und dann in IGCHECK_DIR\system\models24 (s.a. IGCHECK_PA-RAM.MODELS).

Bemerkung: Für <Transferdatei> kann entweder ein relativer oder ein absoluter Dateipfad angegeben werden. Die <Modelldateien> werden jedoch immer relativ zu MODEL_DIR bzw. in IGHECK_DIR\system\models23 oder in externen Internet Model-Repositories gesucht (s.a. 5.1.4).

Meldungen und Fehler werden auf den Bildschirm bzw. in die Logdatei ausgegeben. Diese Logdatei wird im gleichen Verzeichnis wie die Transferdatei angelegt und hat den gleichen Namen wie die Transferdatei mit der Ausnahme, dass die Endung der Datei von .xtf in .log ab geändert wird (z.B. Transferdatei = test.xtf, Logdatei = test.log). Neben Meldungen und Fehlern wird am Schluss der Logdatei eine Statistik über alle gelesenen Objekte ausgegeben. Bei mehreren Inputdateien wird eine Hauptlogdatei mit einer Zusammenfassung aller Resultate geschrieben. Die detaillierten Informationen findet man in einer separaten Logdatei pro Inputdatei.

Damit Sie iG/Check von der Kommandozeile aus in einem beliebigen Verzeichnis starten können, müssen Sie die PATH-Variable um das bin-Verzeichnis von ICS for Windows erweitern. Die Variable können Sie wie folgt definieren:

- Öffnen Sie in der Windows-Systemsteuerung: System > Erweitert > Umgebunsvariablen
- Definieren oder erweitern Sie die Variable PATH als Systemvariable oder Benutzervariable um den Anteil c:\igcheck2\system\bin (Annahme iG/Check wurde unter c:\igcheck2 installiert).
- Melden Sie sich in Ihrem System ab und wieder an, oder starten Sie den Computer neu.

4. Fehlermeldungen

4.1. Was überprüft wird

Wie bereits in der Einleitung beschrieben, überprüft iG/Check sowohl die INTERLIS-Definitionsdatei als auch die INTERLIS-Transferdatei. Die Modelldatei wird auf syntaktische Korrektheit analysiert. Dazu wird automatisch der offizielle INTERLIS Compiler der KOGIS aufgerufen (Version s.a. 1.1). Falls Fehler in der Modelldatei gefunden werden, wird der Prüfvorgang an dieser Stelle mit einer entsprechenden Fehlermeldung abgebrochen. Falls in der Modelldatei keine Fehler gefunden werden, wird als nächstes die Transferdatei analysiert. In der Transferdatei wird folgendes getestet:

- Syntaktische Korrektheit der Transferdatei, d.h. sind die XML-Tags TRANSFER, HEADERSECTION, DATASECTION, etc. in der richtigen Reihenfolge angeordnet, gibt es unbekannte XML-Tags etc.
- · Korrektheit der Modell-, Ebenen- und Klassennamen.
- Statische Wertebereiche, d.h. alle Objektattribute haben Wertebereiche gemäss Modelldatei (inkl. Koordinatenbereiche von Punkten, Linien und Flächen).
- Dynamische Wertebereiche, d.h. Auflösung aller Referenzen (z.B. Referenz von Rolle Gebaeudenummer.Objekt auf Tabelle BoFlaeche in Topic Bodenbedeckung).
- Eindeutigkeit der Transferidentifikation und Basketidentifikationen pro Transferdatei.
- Kardinalität von BAG, LIST und Rollen.
- UNIQUE CONSTRAINT und LOCAL UNIQUE.
- Korrektheit der Topologie von AREA-Attributen (z.B. BoFlaeche.Geometrie im Topic Bodenbedeckung).
- Externe Referenzen (bei mehreren Inputdateien).
- MANDATORY, PLAUSIBILITY, EXISTENCE, SET CONSTRAINT.
- OID AS UUIDOID.
- etc.

4.2. Verhalten bei Fehlern

iG/Check prüft immer die ganze / alle Transferdatei(en) unabhängig wie viele oder welche Fehler gefunden werden. Bei syntaktischen Fehlern oder unbekannten Topic- bzw. Klassennamen synchronisiert sich iG/Check auf das nächste bekannte Element.

4.3. Fehlermeldungen

Fehlermeldungen werden von iG/Check in englischer Sprache ausgegeben. Die meisten Fehlermeldungen von iG/Check beziehen sich auf eine Zeile in der Transferdatei. Die erste Zeile der Transferdatei hat die Nummer 1. In der Transferdatei ist es möglich, dass sich ein Objekt über mehrere Zeilen erstreckt. Falls sich die Fehlermeldung auf ein mehrzeiliges Objekt bezieht, wird die Zeilennummer der ersten Zeile des fehlerhaften Objekts ausgegeben. Jede Fehlermeldung hat ausserdem eine Fehlernummer über welche der Fehler eindeutig bestimmt werden kann. Im Anhang B ist die Bedeutung der Fehlermeldungen geordnet nach Fehlernummern zusammengestellt.

5. Konfigurationsparameter

Der Anwender kann die Ausgaben bzw. die Prüffunktionen von iG/Check über Konfigurationsparameter seinen Bedürfnissen anpassen. Die Konfigurationsparameter müssen in der Datei IGCHECK_DIR\user\script\igcheck\interlis2.cfg eingetragen werden. Diese Datei kann unter ICS for Windows mit der Funktion Show Script angezeigt und bearbeitet werden.

iG/Check for INTERLIS 2 unterstützt auch die ältere INTERLIS Version 2.3. Die meisten Parameter für die Version 2.3 bzw. Version 2.4 sind gleich und sind daher nur für die Version 2.4 beschrieben. Das Modellverzeichnis für INTERLIS 2.3 heisst ...\models23.

5.1. Allgemeine Parameter

5.1.1. IGCHECK_PARAM.FORCE_COMPILE

Falls dieser Parameter auf ON (Default = OFF) gesetzt wird, werden die INTERLIS Datenmodelle jedes Mal mit dem INTERLIS 2 Compiler analysiert. Falls die Option auf OFF gesetzt ist, wird zuerst nachgeschaut ob bereits eine vorcompilierte Version des Modells existiert (.ilo Datei). Das Laden von vorcompilierten Modelldateien ist viel schneller möglich, daher ist die Option normalerweise auf OFF gesetzt.

5.1.2. IGCHECK_PARAM.MODELS

Mit dieser Option kann man angeben, wie iG/Check die zum Datensatz gehörigen Modelldateien bestimmt. XTF bedeutet, dass die Modelle automatisch aus der gewählten .xtf Datei bestimmt werden. Dazu wird wie folgt vorgegangen:

- Es wird nach dem ersten <model> Element der <headersection> gesucht und aus diesem der Name des Hauptmodells gelesen. Falls kein <model> Element gefunden wurde, wird der Modellname des Hauptmodells aus dem ersten Objekttag der <datasection> extrahiert.
- Das Hauptmodell wird zuerst in IGCHECK_DIR\user\models24, dann in allfälligen externen Internet Model-Repositories und schliesslich in IGCHECK_DIR\system\models24 gesucht (s.a. Anhang D).
- Falls das Hauptmodell gefunden wird, wird das Hauptmodell nach IMPORTS durchsucht und so die allfälligen Basismodelle bestimmt. Für die Basismodelle wird ebenso verfahren.
- Der INTERLIS 2 Compiler wird automatisch mit den so bestimmten Modellen aufgerufen.

Normalerweise funktioniert das oben beschriebene Verfahren gut und ist ausserdem sehr praktisch in der Benutzung. Es kann aber sein, dass man in bestimmten Fällen die automatische Bestimmung der Datenmodelle ausschalten möchte. In diesem Fall kann man unter MODELS auch eine Liste von Datenmodelldateien in der korrekten Reihenfolge für den INTERLIS 2 Compiler angeben. Beispiel:

MODELS => units.ili,time.ili,coordsys.ili,dm01avch24d.ili

Die Dateien werden ebenfalls zuerst in IGCHECK_DIR\user\models24 dann in IGCHECK_DIR\system\models24 gesucht. Schliesslich hat man noch die Möglichkeit in der Datei IG-CHECK_DIR\user\www\models\ilimodels.xml spezielle Suchregeln zu definieren (s.a. Anhang D).

5.1.3. IGCHECK_PARAM.MODEL_NAME

Unter MODEL_NAME kann man den Namen eines Basismodells des Hauptmodells angeben, z.B. DMAVTYM_Alles_V1_0 bei kantonalen DMAV Erweiterungen. Die Überprüfung findet dann nur gemäss den Regeln des Basismodells statt (polymorpher Check).

5.1.4. IGCHECK_PARAM.MODEL_DIR

Normalerweise werden Modelldateien (.ili) zuerst in IGCHECK_DIR\user\models24 gesucht. Mit der Option MODEL_DIR kann man einen alternativen (User-)Suchpfad angeben (Default = OFF).

5.1.5. IGCHECK_PARAM.INPUT_EXTENSION

INTERLIS 2 Transferdateien weisen normalerweise die Endung .xtf auf. Falls man nun beim Öffnen der Inputdatei nach einer anderen Endung suchen möchte (z.B. .xml), kann man diese hier angeben (ohne Punkt).

5.1.6. IGCHECK_PARAM.VERSION

Mit VERSION kann die INTERLIS Version explizit angegeben werden. Mögliche Werte sind 2.3, 2.4 oder XTF (Default = XTF). Mit XTF wird die INTERLIS Version automatisch aus der Inputdatei bestimmt (<version> Attribut der <headersection>).

5.1.7. IGCHECK_PARAM.INTERNET_ACCESS

Mit INTERNET_ACCESS kann der Zugriff auf externe Internet-Repositories komplett ab geschaltet werden. Mögliche Werte sind ON oder OFF (Default = ON). Mit OFF werden Modelle nur in lokalen Verzeichnissen von iG/Check gesucht, wobei auch lokal gecachete Versionen von .ili Dateien aus den Internet-Repositories bei der Suche verwendet werden.

5.1.8. IGCHECK_PARAM.PROXY_*

Falls INTERNET_ACCESS auf ON gesetzt wurde, muss u.U. auch ein allfällig vorhandener HTTP/HTTPS Proxy-Server konfiguriert werden. Dafür stehen die Optionen PROXY_SERVER, PROXY_USER und PROXY_PASSWORD zur Verfügung. Wird die Option PROXY_SERVER auf AUTO gesetzt (Default = AUTO), werden die Einstellungen automatisch aus der Windows Systemsteuerung übernommen. Falls Sie trotz AUTO nicht auf Internet-Repositories zugreifen können, müssen Sie die PROXY_* Parameter manuell setzen. Fragen Sie dazu Ihren Netzwerkadministrator.

5.2. Prüfungen ein- oder ausschalten

Die nachfolgenden Optionen können jeweils die Werte ON (= einschalten) oder OFF (= ausschalten) annehmen.

5.2.1. IGCHECK_PARAM.CHECK_AREA

Topologietest von Flächennetzen aktivieren / deaktivieren (Default = ON).

5.2.2. IGCHECK_PARAM.CHECK_UNIQUE

UNIQUE CONSTRAINT und UNIQUE (LOCAL) prüfen (Default = ON).

5.2.3. IGCHECK_PARAM.CHECK_CARDINALITY

Prüft die Kardinalität von Beziehungen. Folgende Werte sind zulässig: ON und OFF (Default = ON).

5.2.4. IGCHECK_PARAM.CHECK_CONSTRAINTS

MANDATORY, PLAUSIBILITY, SET CONSTRAINT prüfen (Default = ON). Hinweis: Benutzerdefinierte Funktionen können nicht automatisch getestet werden, da diese immer an spezielle Vereinbarungen (CONTRACTED) gebunden sind. Auf Anfrage ist die Implementierung von benutzerdefinierten Funktionen im Checker jedoch möglich.

5.2.5. IGCHECK_PARAM.CHECK_TAG_ORDER

Reihenfolge der XML-Tags prüfen (Default = ON). INTERLIS 2 schreibt eine vollständige Ordnung der XML-Tags in der Transferdatei vor. Es kann sein, dass eine Transferdatei sehr viele solche Fehler enthält. In diesem Fall kann man die Prüfung deaktivieren um die anderen Fehler besser erkennen zu können.

5.2.6. IGCHECK_PARAM.CHECK_EXTERNAL_REF

Prüft externe Referenzen (EXTERNAL) (Default = AUTO). Folgende Werte sind zulässig: ON, OFF und AUTO. Externe Referenzen sind Referenzen, welche auf Objekte in externen Dateien verweisen. Damit iG/Check diese Referenzen auflösen kann, müssen alle betroffenen Dateien gleichzeitig als Input ausgewählt werden. Im Modus AUTO werden externe Referenzen nur dann geprüft, wenn mehr als eine Inputdatei ausgewählt wurde.

5.2.7. IGCHECK_PARAM.CHECK_CHARSET

Prüft den Zeichensatz gemäss INTERLIS 2-Referenzhandbuch, Anhang B [1]. Folgende Werte sind zulässig: ON und OFF (Default = ON).

5.2.8. IGCHECK_PARAM.CHECK_ARC_RADIUS

Prüft für Kreisbögen ob der Radius <R> vom berechneten Wert mehr als 1% abweicht. Zulässige Werte sind ON oder OFF (Default = OFF).

5.3. Formatierung der Logdatei

5.3.1. DISPLAY_ATTRIBUTES

Standardmässig gibt iG/Check die Fehlernummer (s.a. Anhang B), die Fehlermeldung, die Zeilennummer und die Klasse des fehlerhaften Objekts aus. In gewissen Fällen möchte man jedoch mehr Informationen zum fehlerhaften Objekt direkt in der Fehlermeldung darstellen (z.B. die Nummer für LFP1). Mit der Map DISPLAY_ATTRIBUTES kann man pro Objektklasse die Attribute spezifizieren, welche in der Fehlermeldung ausgeben werden sollen, Beispiel:

```
MAP DISPLAY_ATTRIBUTES
  ! Topic,Class => Attributes
  FixpunkteKategoriel,LFP1 => LINE,CLASS,Nummer
  DEFAULT => LINE,CLASS
  END_MAP
```

Im letzten Beispiel wird z.B. die Ausgabe der Attribute LINE, CLASS und Nummer für die Klasse FixpunkteKategorie.LFP1 verlangt. Für alle anderen Klassen (DEFAULT) wird nur LINE und CLASS ausgegeben (s.a. unten). Neben den Attributen gemäss Datenmodell stehen folgende vordefinierte Systemattribute zur Verfügung:

LINE

Zeilennummer des fehlerhaften Objekts.

CLASS

Klasse des fehlerhaften Objekts.

TOPIC

Topic des fehlerhaften Objekts.

MODEL

Modell des fehlerhaften Objekts.

TAG

XML-Tag des fehlerhaften Objekts.

5.3.2. IGCHECK_PARAM.MULTI_LINE_ERROR

Falls dieser Parameter auf ON (Default = OFF) gesetzt wird, wird jede Fehlermeldung in der Logdatei auf mehrere Zeilen umgebrochen. Insbesondere zusammen mit der Map DISPLAY_AT-TRIBUTES kann es sinnvoll sein diese Option zu aktivieren.

5.3.3. IGCHECK_PARAM.TRACE

Falls dieser Parameter auf ON (Default = OFF) gesetzt wird, wird jedes von iG/Check gelesene Objekt vollständig in der Logdatei aufgelistet.

5.3.4. IGCHECK_PARAM.TRACE_DRIVER

Falls dieser Parameter auf ON (Default = OFF) gesetzt wird, werden für jedes vom XTF Driver gelesene Objekt Meldungen in die Logdatei ausgegeben.

5.4. Fehleroutput

5.4.1. IGCHECK_PARAM.XTF_ERRORLOG

Es besteht grundsätzlich die Möglichkeit, alle Fehlermeldungen auch als INTERLIS 2 XML Transferdatei auszugeben (.xtf). Falls die Option aktiviert ist (= ON | 2.3 | 2.4), wird zusätzlich zur normalen Logdatei eine XTF-Fehlerdatei erzeugt. Die XTF-Fehlerdatei wird im gleichen Verzeichnis wie die Transferdatei angelegt und hat den gleichen Namen wie die Transferdatei mit der Ausnahme, dass die Endung der Datei von .xtf in _err.xtf ab geändert wird (z.B. Transferdatei = test.xtf, XTF-Fehlerdatei = test_err.xtf). Das zur Fehlerdatei gehörige INTERLIS 2 Datenmodell ist unter IGCHECK_DIR\system\models24\ErrorLog24.ili abgelegt (s.a. Anhang C). Pro Fehler werden neben den Attributen Type, Module, Description auch die unter DISPLAY_ATTRIBUTES spezifizierten Attribute ausgegeben (in der Attributes Liste).

5.4.2. IGCHECK_PARAM.CSV_ERRORLOG

Dieser Parameter hat grundsätzlich die gleiche Wirkung wie XTF_ERRORLOG, nur dass alle Fehlermeldungen als .csv Datei ausgegeben werden (ON oder OFF).

A. Literaturverzeichnis

[1] Schweizer Norm SN 612 031, INTERLIS 2.3 Modellierungssprache und Datentransfermethode, Ausgabe 2006 (s.a. http://www.interlis.ch/interlis2/download23_d.php).

[2] Eidg. Vermessungsdirektion, Datenmodell DM01AVCH24D, Ausgabe Juni 2004 (s.a. http://www.cadastre.ch/pub/down/interlis/dm01avch24_de.pdf).

B. Verzeichnis der Fehlermeldungen

1	ili2c syntax error
	Beschreibung:
	Der INTERLIS 2 Compiler konnte das zugehörige Datenmodell nicht compilieren. Weitere Informationen zu der Fehlermeldung sind aus der .log Datei ersichtlich.
	Beispiel:
	error output from INTERLIS 2.4 compiler:
	<pre>ili2c>\RoadsExdm2ben.ili:3:expecting EOF, found 'MODE' ili2c> compiler failed</pre>
	check process aborted by ili2c errors.

2 model parse error, <explanation> Beschreibung: Die vom Compiler gelieferte Information konnte von iG/Check nicht vollständig verarbeitet werden. Der Prüfvorgang wurde abgebrochen. Weitere Informationen dazu stehen in der .log Datei. Beispiel:

model DM01AVCH24D contains errors,
see also\user\models23\dm01avch24d.err

xtf error, <explanation>

Beschreibung:

Fehlermeldung, welche durch den XTF Driver gemeldet wird. Die Art der Fehlermeldung wird in <explanation> näher erläutert.

Beispiel:

3

xtf error, Attribute OPERATION has wrong value in object

4	fatal syntax error in input file
	Beschreibung:
	Der XTF Driver kann die Inputdatei nicht verarbeiten. Der Prüfvorgang wird ab- gebrochen. Weitere Information dazu sind aus der .log Datei ersichtlich.
	Beispiel:
	expected, found <geometr></geometr>

10	unable to convert <attr> to type <basetype></basetype></attr>
	Beschreibung:
	Der Wert des Attributs <attr> kann nicht in den Basistyp <basetype> übersetzt werden. Bemerkung: für die weiteren Tests des Attributs wird für den Wert des Attributs UNDEFINED angenommen.</basetype></attr>
	Beispiel:
	unable to convert Geometrie to type COORD unable to convert LFP1Symbol_von to type LINK

11	<attr role> has to be defined</attr role>
	Beschreibung:
	Der Wert des Attributs oder der Rolle <attr role> ist undefiniert. Das Attribut oder die Rolle ist aber im Datenmodell als MANDATORY (obligatorisch) definiert.</attr role>
	Beispiel:
	Geometrie has to be defined Nummer has to be defined
12	the value of atttribute <attr> is out of range, <explanation></explanation></attr>

Beschreibung:

Der Wert des Attributs <attr> ist ausserhalb des im Modell spezifizierten Wertebereichs. Dieser Fehlertyp kennt einige Untervarianten. Z.B. gehört die Verletzung des Koordinatenbereichs durch einen Punkt ebenso dazu wie die Benutzung von unerlaubten Zeichen in Textattributen. Unter <explanation> werden weitere Hinweise zur konkreten Art der Fehlermeldung gegeben.

Beispiel:

the value of NBIdent is out of range, text is too long 18 > 12 the value of LageGen is out of range, 900.0 > 700.0

13	invalid linesegment <coord1><coord2></coord2></coord1>
	Beschreibung:
	Das Liniensegment ist keine gültige Liniendefinition. Beide Punkte sind identisch.
	Beispiel:
	invalid linesegment 1.0/1.0/0.0 1.0/1.0/0.0

14	invalid arcsegment <coord1><coord2><coord3></coord3></coord2></coord1>
	Beschreibung:
	Der Kreisbogen ist keine gültige Kreisbogendefinition. Zwei oder drei Punkte sind identisch oder der mittlere Punkt liegt auf der Geraden durch den 1. bzw. 3. Punkt.
	Beispiel:
	invalid arcsegment 0.0/0.0 1.0/1.0 2.0/2.0

15	the value of <role refattr=""> is out of range, <explanation></explanation></role>
	Beschreibung:
	Die Referenz <role refattr=""> zeigt auf eine TID, welche in der Transferdatei nicht vor-kommt.</role>
	Beispiel:
	<pre>the value of Entstehung is out of range, no object found with tid=zh04p2t400000020</pre>

16	unknown attribute/link <attr> in <class structure=""></class></attr>
	Beschreibung:
	Das Attribut/der Link <attr> darf in der Klasse/Struktur <class structure=""> nicht vor-kommen.</class></attr>
	Beispiel:
	unknown attribute Geometr in DM01AVCH24D.FixpunkteKategorie1.LFP1
17	attributes are out of order for colass/structure> cevalenation>

attributes are out of order for <class/structure>, <explanation: Beschreibung: Die Attribute der Klasse/Struktur <class/structure> sind nicht in der richtigen Reihenfolge in der Transferdatei angeordnet. In <explanation> ist die korrekte Reihenfolge angegeben, dabei werden optionale Attribute zwischen [] dargestellt. Beispiel:

attributes are out of order for DM01AVCH24D.FixpunkteKategorie2.LFP2, correct order is Geometrie,LageGen,LageZuv,NBIdent,Nummer, [HoeheGeom],[HoeheGen],[HoeheZuv],[Punktzeichen], [Begehbarkeit],Entstehung

18 unknown topic <topic>, object in line <line> ignored Beschreibung: Das Topic <topic> des Objekts ist unbekannt. Das Objekt kann nicht weiter über-prüft werden. Beispiel: unknown topic FixpunkteKtegorie1, object in line 823 ignored

20 duplicate transferid, <explanation> Beschreibung: Die Transferid (TID oder BID) kommt in der Transferdatei mehrfach vor. Beispiel: duplicate transferid, TID=ch037kym00490000000200110022

21 the value of <role/attr> is out of range, link <key> points to in-valid target class <class> Beschreibung: Die Referenz <role/attr> zeigt auf ein Objekt mit der falschen Klasse <class>. Beispiel: the value of Street is out of range, link 41 points to invalid target class RoadsExdm2ben.Roads.LandCover

22 list/bag <list/bag> has invalid cardinality <count>, <explanation> Beschreibung: Die Anzahl Elemente <count> des <list/bag> Attributs ist falsch. Beispiel: list/bag Grenze has invalid cardinality 1, valid range is 2..2

23 unknown class <class>, object in line <line> ignored Beschreibung: Die Klasse <class> des Objekts ist unbekannt. Das Objekt kann nicht weiter überprüft werden. Beispiel: unknown class LfP1, object in line 324 ignored

24 invalid tag <tag>, object in line <line> ignored Beschreibung: Das Tag <tag> des Objekts ist unbekannt. Das Objekt kann nicht weiter überprüft werden. Beispiel: unknown tag abc, object in line 323 ignored

50 cardinality <card> of role <role>[<ref>] is invalid, <explanation> Beschreibung: Die Kardinalität <card> der Rolle <role> ist ausserhalb des gültigen Bereichs. Im Beispiel unten zeigen z.B. zwei LFP1Symbol Objekte auf das LFP1 Objekt mit der TIDch04p2t400000021. Erlaubt ist aber max. 1 Verweis. Beispiel: cardinality 2 of role LFP1Symbol.LFP1Symbol_von[ch04p2t40000021] is invalid, valid range is 0..1

60 MANDATORY constraint <constraint> failed for object <class> Beschreibung: Der MANDATORY Constraint <constraint> ergab den Wert FALSE. N\"ahere Hinweise zu <constraint> findet man unter IGCHECK_DIR\<model>.ilp. Beispiel: MANDATORY constraint CONSTRAINT_1 failed for object test_cel.Topic.ClassB

UNIQUE constraint <attributes> (values=<values>) violated, <hint> Beschreibung:

Die Attributkombination <attributes> kommt mehr als einmal in der Transferdatei vor.

Beispiel:

70

71

UNIQUE constraint NBIdent,Identifikator (values=0,TS 1) violated, see also line 28139

LOCAL UNIQUE constraint <path>:<key> violated, <hint>

Beschreibung:

Die Attributkombination <key> kommt mehr als einmal in der Liste oder dem Bag <path> vor.

Beispiel:

LOCAL UNIQUE attr21:attr00 violated, see also attr00=a

205	intersection at <point></point>
	Beschreibung:
	Zwei Linien/Kreisbögen schneiden sich im Punkt <point>.</point>
	Beispiel:

210	duplicate line <line></line>
	Beschreibung:
	Das Liniensegment <line> kommt mehrfach vor.</line>
	Beispiel:
	duplicate line …

211	duplicate arc <arc></arc>
	Beschreibung:
	Das Kreisbogensegment <arc> kommt mehrfach vor.</arc>
	Beispiel:

216	area touch at <point></point>
	Beschreibung:
	Der äussere Rand der Fläche berührt sich in einem Punkt.
	Beispiel:

221	line with no extendsion at <point></point>	
	Beschreibung:	
	Die POLYLINE besteht aus identischen Punkten.	
	Beispiel:	
	*	

226	area with no extendsion at <point></point>
	Beschreibung:
	Der Rand der Fläche besteht aus identischen Punkten.
	Beispiel:
	*
227	
441	area with multiple parts at <point></point>

999	internal error, <explanation></explanation>	
	Beschreibung:	
	Es ist ein interner Fehler in iG/Check aufgetreten. Der Grund wird in <explanation> erläutert. Nach einem internen Fehler wird der Prüfvorgang abgebrochen, d.h. es werden keine weiteren Tests mehr durchgeführt. Bitte schicken Sie die Transfer- datei und die Modelldateien an support@infogrips.ch.</explanation>	
	Beispiel:	
	internal error, enumeration type has no VALUES component	

C. Datenmodell der Fehlerdatei (_err.xtf)

INTERLIS 2.4;

```
MODEL ErrorLog24 (en) AT "http://www.infogrips.ch/models"
   VERSION "2024-08-16" =
   IMPORTS UNQUALIFIED INTERLIS;
   DOMAIN
      Coord2D = COORD
         -3000000.000 .. 3000000.000 [m],
         -3000000.000 .. 3000000.000 [m],
         ROTATION 2 -> 1;
   TOPIC Errors =
      DOMAIN
         ErrorCategory = (error,warning,info);
         STRUCTURE AbstractGeometry (ABSTRACT) =
         END AbstractGeometry;
         STRUCTURE PointGeometry EXTENDS AbstractGeometry =
            Geom: MANDATORY Coord2D;
         END PointGeometry;
         STRUCTURE LineGeometry EXTENDS AbstractGeometry =
            Geom: MANDATORY POLYLINE WITH (STRAIGHTS, ARCS)
                            VERTEX Coord2D;
         END LineGeometry;
         STRUCTURE SurfaceGeometry EXTENDS AbstractGeometry =
            Geom: MANDATORY SURFACE WITH (STRAIGHTS, ARCS)
                            VERTEX Coord2D WITHOUT OVERLAPS > 0.2;
         END SurfaceGeometry;
         STRUCTURE Attribute =
            Name: TEXT*40;
            Value: TEXT*255;
         END Attribute;
         STRUCTURE Profile =
           Name: TEXT*40;
         END Profile;
      CLASS Error =
         Module: MANDATORY TEXT*40;
         ErrorId: MANDATORY TEXT*64;
         Category: MANDATORY ErrorCategory;
         Group: TEXT*64;
         Description: MANDATORY TEXT*255;
         Model: TEXT*80;
         Topic: TEXT*80;
         Bid: TEXT*40;
         Class: TEXT*80;
         Tid: TEXT*40;
         Line: 1 .. 200000000;
         CharPos: 1 .. 200000000;
         Geom: LIST {0..*} OF AbstractGeometry;
```

```
UserAttributes: LIST {0..*} OF Attribute;
         Profiles: LIST {0..*} OF Profile;
         Tolerated: (GT,UT,ET);
      END Error;
      CONSTRAINTS OF Error =
         !!@ cid=ERR001;cattr=Bid
         !!@ cmsg="Topic has to be defined, if Bid is defined"
         MANDATORY CONSTRAINT
            DEFINED(Bid) => DEFINED(Topic);
         !!@ cid=ERR002;cattr=Class
         !!@ cmsg="Topic has to be defined, if Class is defined"
         MANDATORY CONSTRAINT
            DEFINED(Class) => DEFINED(Topic);
         !!@ cid=ERR003;cattr=Tid
         !!@ cmsg="Class has to be defined, if Tid is defined"
         MANDATORY CONSTRAINT
            DEFINED(Tid) => DEFINED(Class);
         !!@ cid=ERR004;cattr=CharPos
         !!@ cmsg="Line has to be defined, if CharPos is defined"
         MANDATORY CONSTRAINT
            DEFINED(CharPos) => DEFINED(Line);
      END;
   END Errors;
END ErrorLog24.
```

D. Suche nach Modelldateien

Mit der iG/Check Version 2012 wurde die Möglichkeit der Suche nach Modellen nochmals stark erweitert. Hier alle wichtigen Punkte im Überblick:

- Weiterhin wird die automatische Suche nach Modellen in den Verzeichnissen IG-CHECK_DIR\user\models..bzw.IGCHECK_DIR\system\models..unterstützt.Damit ein Modell <Modell>auch gefunden wird, muss die zugehörige Modelldatei obligatorisch <Modell>.ili heissen.
- Mit dem Parameter IGCHECK_PARAM.MODELS kann auch explizit eine Liste von Modelldateien angegeben werden.
- Zusätzlich können Modelldateien, welche nicht gleich heissen wie das Modell, in der XML-Datei IGCHECK_DIR\user\www\models\ilimodels.xml eingetragen werden. Die XML-Datei muss gemäss dem INTERLIS 2.3 Datenmodell IliRepository09 aufgebaut sein. Nachfolgend ein kleines Beispiel dazu:

```
<IliRepository09.RepositoryIndex BID="b1">
<IliRepository09.RepositoryIndex.ModelMetadata TID="1">
```

```
<Name>CoordSys</Name>
<SchemaLanguage>ili2_3</SchemaLanguage>
<File>models23/CoordSys-20050616.ili</File>
<Version>2003-03-18</Version>
</IliRepository09.RepositoryIndex.ModelMetadata>
</IliRepository09.RepositoryIndex>
```

Hier wird z.B. die INTERLIS 2.3 Modelldatei models23\CoordSys-20050616.ili für das Datenmodell CoordSys eingetragen. Achtung: Das obige Beispiel ist nicht vollständig. Es fehlt z.B. die HEADER bzw. die DATA Section.

 Schliesslich ist es möglich iG/Check automatisch in externen Internet Model-Repositories suchen zu lassen. Dazu muss die Datei IGCHECK_DIR\user\www\models\ilisite.xml gemäss INTERLIS 2.3 Datenmodell Ilisite09 angepasst werden. Nachfolgend ein Ausschnitt aus der Standard ilisite.xml Datei von iG/Check:

```
<subsidiarySite>
<IliSite09.RepositoryLocation_>
<value>user</value>
</IliSite09.RepositoryLocation_>
<IliSite09.RepositoryLocation_>
<value>http://models.interlis.ch</value>
</IliSite09.RepositoryLocation_>
system</value>
</IliSite09.RepositoryLocation_>
<value>system</value>
</IliSite09.RepositoryLocation_>
```

Die obige Definition bedeutet, dass iG/Check zuerst im lokalen user Verzeichnis, dann im Internet Repository http://models.interlis.ch und schliesslich im lokalen system Verzeichnis nach Modelldateien sucht. Im Prinzip kann die obige Liste beliebig ergänzt oder verändert werden. Das sollte jedoch in den wenigsten Fällen notwendig sein, da auch via http://models.interlis.ch verknüpfte Model-Repositories automatisch durchsucht werden.

• Falls mit Internet Model-Repositories gearbeitet wird, werden die Modelldateien nur dann frisch herunter geladen, wenn die Modelldateien geändert haben. Die geladenen Dateien werden unter \data\cache lokal gespeichert. Ob eine Änderung stattgefunden hat oder nicht, wird via den MD5-Hash der .ili Datei entschieden.

E. Metaattribute

Der Checker unterstützt für MANDATORY CONSTRAINT's diverse Modell Metattribute welche nach Norm eCH-0117 aufgebaut sein müssen. In der folgenden Tabelle sind alle Metattribute und ihre Funktion beschrieben.

Name	Beschreibung
cid	Benutzerdefinierte Nummer oder Name des Constraint. Die Nummer / der Name wird in jeder Fehlermeldung ausgeben.
cattr	Kommaseparierte Liste von Attributnamen. Die Werte der Attribute werden in jeder Fehlermeldung ausgegeben.
ccat	Fehlerkategorie. Es werden folgende Kategorien unterstützt: error, warning oder info (Default: error).

cprof	Kommaseparierte Liste von Profilnamen (Default: all).
cmsg	Meldung welche anstelle der Standardmeldung ausgeben werden soll. Falls der Checker mit der Option -language <language> aufgerufen wird, wird die Meldung aus cmsg_<language> entnommen (s.a. unten).</language></language>
cmsg_de	Wie cmsg. Der Meldungstext muss aber auf Deutscher angeben werden.
cmsg_fr	Wie cmsg. Der Meldungstext muss aber auf Französisch angeben werden.
cmsg_it	Wie cmsg. Der Meldungstext muss aber auf Italienisch angeben werden.
cmsg_en	Wie cmsg. Der Meldungstext muss aber auf Englisch angeben werden.